
1st Edition

BASIC CONCEPTS OF MECHANICAL ENGINEERING

ISBN: 978-81-981763-5-6

The Institute for Innovations in Engineering and Technology (IIET)

Authors of the Text Book: Basic Concepts of Mechanical Engineering

Dr. M. Maruthi Rao is an Associate Professor in the Department of Mechanical Engineering at AITS, Tirupati. He holds a B.Tech from Sri Venkateswara University, Tirupati, M.Tech in Heat Power and R&AC from JNTUA, Anantapur, and a Ph.D. from Acharya Nagarjuna University, Guntur. His research focused on the heat transfer characteristics of biological quenching media for Al 2585 alloy. With over 18 years of teaching experience, his areas of interest include heat transfer, renewable energy, thermal engineering, and alternative fuels. He has published extensively in reputed journals.

Smt. S. Praveena is an Assistant Professor in Mechanical Engineering at AITS, Tirupati. She holds a B.Tech and M.Tech (CAD/CAM) from JNTU Anantapur. With over 10 years of teaching experience and prior work as a Design Engineer at AZAD Engineering Pvt. Ltd., her interests include design, manufacturing, materials science, and design software. She has published several research papers in reputed journals.

Mr. Ravi Teja Sanam is an Assistant Professor in the Department of Mechanical Engineering at AITS, Tirupati. He holds a B.Tech from SKIT Engineering College, Sri Kalahasti, and an M.Tech in Thermal Engineering from JNTU Hyderabad. With experience in both academia and industry, his interests include IC engines, thermal engineering, alternative fuels, and practical thermal applications. He has published several papers in reputed journals.

Dr. P. Ratna Raju is an Assistant Professor in the Department of Mechanical Engineering at JNTUA, Kalikiri. He holds a B.Tech from RVR & JC (ANU, Guntur), an M.Tech in Thermal Engineering, and a Ph.D. in IC Engines from JNTUA, Anantapur. With 17 years of teaching experience, his research interests include thermal and manufacturing engineering. He has published several papers in reputed national and international journals.

Scan this QR Code &visit us:

Published by:

The Institute for Innovations in Engineering and Technology (IIET) www.theiiet.com contact@theiiet.com

978-81-981763-5-6

978-81-981763-5-6

BASIC CONCEPTS OF **MECHANICAL ENGINEERING**

Edition-I August-2025

Author(s)

Dr. M. Maruthi Rao

Associate Professor Dept. of Mechanical Engineering Annamacharya Institute of Technology and Sciences(Autonomous) Tirupati, AP, India

Mrs. S. Praveena

Assistant Professor Dept. of Mechanical Engineering. Annamacharya Institute of Technology and Annamacharya Institute of Technology and Sciences (Autonomous) Tirupati, AP, India.

Mr. Ravi Teja Sanam

Assistant Professor Dept. of Mechanical Engineering. Sciences (Autonomous) Tirupati, AP, India.

Dr. P. Ratna Raju

Assistant Professor Dept. of Mechanical Engineering. Jawaharlal Nehru Technological University, Kalikiri, AP, India

Publisher:

The Institute for Innovations in Engineering and Technology #1-102, GP Street, Gurazada, Pamidimukkala Mandal, Krishna (Dt.), AP-521256, Website: www.theiiet.com

E-Mail: contact@theiiet.com

Price: Rs. 650/-

THE INSTITUTE FOR INNOVATIONS IN ENGINEERING AND TECHNOLOGY

Published by The Institute for Innovations in Engineering and Technology

1-102, GP Street, Gurazada, Pamidimukkala Mandal, Krishna (Dt.), Andhra Pradesh-521256.

Title of the Book: **Basic Concepts of Mechanical Engineering**; *Edition-1*, *August Copyright* © 2025, *with Authors*.

Authors:

Dr. M. Maruthi Rao, Associate Professor, Dept. of Mechanical Engineering Annamacharya Institute of Technology and Sciences, (Autonomous) Tirupati, AP, India.

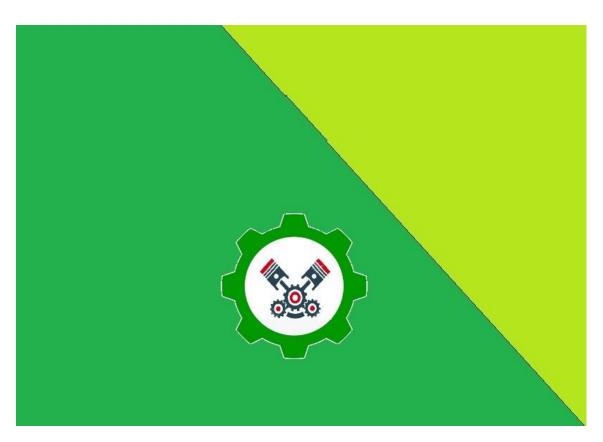
Mrs. S. Praveena, Assistant Professor, Dept. of Mechanical Engineering. Annamacharya Institute of Technology and Sciences, (Autonomous) Tirupati, AP, India.

Sri. Ravi Teja Sanam, Assistant Professor, Dept. of Mechanical Engineering. Annamacharya Institute of Technology and Sciences, (Autonomous) Tirupati, AP, India.

Dr. P. Ratna Raju, Assistant Professor, Dept. of Mechanical Engineering. Jawaharlal Nehru Technological University, Kalikiri, AP, India.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying, recording or otherwise or stored in a database or retrieval system without the prior written permission of the publisher or editors. The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,


The Institute for Innovations in Engineering and Technology

Information contained in this work has been obtained by The Institute for Innovations in Engineering and Technology, from sources believed to be reliable. However, neither The Institute for Innovations in Engineering and Technology nor its authors guarantee the accuracy or completeness of any information published herein, and neither The Institute for Innovations in Engineering and Technology (India) nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that The Institute for Innovations in Engineering and Technology and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

Price: MRP Rs. 650/-

ISBN: 978-81-981763-5-6

Typeset at The IIET, D: 1-102, GP Street, Vijayawada-521256. Printed and Bounded in India at Flash Photostat, Vijayawada-520007, Visit us at: www.theiiet.com; Phone: 91-9533111789; Write to us at: contact@theiiet.com

BASIC CONCEPTS IN MECHANICAL ENGINEERING

(Common to all branches)
(B. Tech I Year I & II Semester as per JNTUA and JNTUK)

Dr. M. MARUTHI RAO S. PRAVEENA RAVI TEJA SANAM Dr. P. RATNA RAJU

PREFACE

Welcome to the world of mechanical engineering! "Basic Concepts in Mechanical Engineering" is your comprehensive guide to the fundamental principles and concepts that form the bedrock of this exciting field. Primarily intended for mechanical engineering students at various levels, it's also a valuable resource for those from other disciplines seeking basic knowledge. We've aimed to make the content accessible to all readers, regardless of their prior experience.

Drawing from our collective experience as educators, researchers, and practitioners, we've strived to present the material clearly and engagingly, emphasizing a deep understanding of core concepts. We encourage active learning through examples, exercises, and thought-provoking questions. Dr. M. Maruthi Rao contributed to Thermal Engineering and Mechanical Power Transmissions. Smt. S. Praveena authored the sections on Engineering Materials and Introduction to Robotics. Sri. Ravi Teja Sanam covered Introduction to Mechanical Engineering, Role of Mechanical Engineering in Various Sectors, Manufacturing Processes, and Power Plants.

We welcome any suggestions, omissions, or error reports for the improvement of this book; they will be acknowledged and incorporated in the next edition.

Dr. M. Maruthi Rao S. Praveena Ravi Teja Sanam Dr. P. Ratna Raju

ACKNOWLEDGEMENT

The author, **Dr. M. Maruthi Rao**, expresses his sincere gratitude to his children, **Ms. M. Jaya Sri** and **Ms. M. Gnana Sri**, for their kind cooperation and support, which greatly contributed to the successful completion of this book. Their patience, understanding, and encouragement have been a constant source of motivation.

The author, Mrs. S. Praveena, gratefully acknowledges Dr. M. Maruthi Rao for his expert guidance and unwavering support throughout the development of this book. She extends heartfelt thanks to her parents, Smt. S. Thulasi Garu and Sri S. Venkata Ramana Reddy Garu, for their steadfast moral support, and to her life partner, Sri V. Srikanth Reddy, for his continuous encouragement and belief in her professional journey.

The author, Mr. Ravi Teja Sanam, expresses his deep gratitude to his parents, Smt. S. Prasuna Garu and Sri S. Sai Ram Reddy Garu, for their invaluable blessings and lifelong support. He also offers special thanks to his life partner, Smt. Sri Durga Sanam, and their children for their unconditional love, patience, and strength, which were instrumental in the successful completion of this work.

Lastly, the co-authors collectively express their profound appreciation to **Dr. M. Maruthi Rao** for his continued insightful guidance, encouragement, and intellectual mentorship throughout the research and writing process. His contributions have been pivotal in shaping the content and direction of this book.

This book is lovingly dedicated to **our beloved students**, whose curiosity, enthusiasm, and pursuit of knowledge continually inspire us. *With love and gratitude, we acknowledge your role in shaping this journey*.

DR. M. MARUTHI RAO, M. Tech, PhD.

SMT. S. PRAVEENA, M. Tech.

SRI. RAVI TEJA SANAM, M. Tech.

DR. P. RATNA RAJU, M. Tech, PhD.

FOREWORD

Engineering, often described as the art of turning science into practical solutions, lies at the very heart of human progress. Among its many branches, Mechanical Engineering stands as a beacon of innovation and ingenuity. This field, which blends the principles of physics, mathematics, and material science, has continually pushed the boundaries of what is possible, shaping our world in profound ways.

"Basic Concepts in Mechanical Engineering" is a testament to the enduring importance and fascination of this discipline. In its pages, readers will embark on a journey through the fundamental concepts, theories, and applications that underpin the remarkable field of mechanical engineering.

From the role of mechanical engineers to the technologies in different sectors like energy, manufacturing, automotive, aerospace and marine sectors, "Basic Concepts in Mechanical Engineering" provides a comprehensive foundation for those embarking on their engineering journey. It not only imparts the theoretical knowledge necessary for success but also offers practical insights as real-world engineering applications.

From the invention of the wheel to the development of cutting-edge robotics and aerospace technologies, the impact of mechanical engineering on society has been nothing short of revolutionary. This book encapsulates the essence of that legacy, allowing readers to connect with the spirit of innovation that drives this field forward.

The authors of this book have drawn upon their wealth of experience and expertise to create a work that not only educates but also inspires. Through clear explanations, illustrative examples, and practical applications, they empower readers to explore the endless possibilities that mechanical engineering offers.

May this book be your compass as you navigate the intricate landscapes of manufacturing processes, basics of thermal engineering, power plants, mechanical power transmission, introduction to robotics and may it inspire you to become an architect of a brighter, more innovative future.

Dr.R.K.Suresh, M.Tech, PhD. Professor, Department of Mechanical Engineering, JNTSKSF-Sri Kalahasti.

Copy Holders Names

Dr. M. Maruthi Rao, M.Tech, PhD.

Associate Professor, Dept. of Mechanical Engineering

Annamacharya Institute of Technology and Sciences, (Autonomous) Tirupati, AP, India.

Smt. S. Praveena, M.Tech.
Assistant Professor, Dept. of Mechanical Engineering.
Annamacharya Institute of Technology and Sciences, (Autonomous) Tirupati, AP, India.

Sri.Ravi Teja Sanam, M.Tech (Thermal Engineering)
Assistant Professor, Dept. of Mechanical Engineering.
Annamacharya Institute of Technology and Sciences, (Autonomous) Tirupati, AP, India.

Dr. P. Ratna Raju, M.Tech, PhD.
Assistant Professor, Dept. of Mechanical Engineering.
Jawaharlal Nehru Technological University, Kalikiri, AP, India

Dr. M. Maruthi Rao received his B.Tech from Sri Venkateswara University, Tirupati, M.Tech in Heat Power and Refrigeration & Air Conditioning (R&AC) from JNTUA, Anantapur, and his Ph.D. from Acharya Nagarjuna University (ANU), Guntur. His doctoral research focused on the heat transfer rate of biological quenching mediums and their chemical characterization, specifically for Al 2585 alloy. With over 18 years of teaching experience, Dr.

Rao currently serves as an Associate Professor in the Department of Mechanical Engineering at AITS, Tirupati. He has published numerous research papers in reputed national and international journals. His research interests include heat transfer, renewable energy resources, thermal engineering, and alternative fuels.

Smt. S. Praveena received her B.Tech from JNTU Anantapur (CREC Tirupati) and her M.Tech in CAD/CAM from JNTU Anantapur (SIETK Puttur). She has published multiple research papers in well-regarded national and international journals. With more than 10 years of teaching experience, she has also worked as a Design Engineer at AZAD Engineering Pvt. Ltd. (Hyderabad). Currently,

she serves as an Assistant Professor in the Department of Mechanical Engineering at AITS College, Tirupati. Her research interests include design, manufacturing, materials science, and design software.

Ravi Teja Sanam holds a B.Tech degree from SKIT Engineering College, Sri Kalahasti and M.Tech in Thermal Engineering from Jawaharlal Nehru Technological University, Hyderabad. He has published several research papers in reputed national and international journals. With valuable experience in both academia and industry, he is currently serving as an Assistant Professor in Dept. of Mechanical Engineering at AITS, Tirupati. His areas of interest

include Internal Combustion (IC) Engines, Thermal Engineering, Alternative Fuels, and other practical applications in the field of thermal sciences.

Dr. P. Ratna Raju holds a B.Tech degree from RVR & JC (ANU Guntur), and M.Tech in Thermal Engineering from JNTUA, Anantapur, and Ph.D in IC Engines from JNTUA, Anantapur,. He has published several research papers in reputed national and international journals. His teaching experience of 17 years, he is currently serving as an Assistant Professor in Dept. of Mechanical Engineering JNTUA, Kalikiri, His areas of interest include Thermal

Engineering and Manufacturing Engineering.

List of topics

S.No	Торіс	Page. No
1.	Introduction to Mechanical Engineering	
	1.1 Role of Mechanical Engineering in Industries and Societies	1-2
	1.2 Overview of technologies in various sectors	2-10
	1.2.1 Technological developments in Energy sector	2-4
	1.2.2 Technological developments in Manufacturing sector	4-6
	1.2.3 Technological developments in Automotive sector	6-8
	1.2.4 Technological developments in Aerospace sector	8-9
	1.2.5 Technological developments in Marine sector	9-10
2.	Engineering Materials	
	2.1 Sub classification of metals	12
	2.2 Properties of metals	13
	2.2.1 Physical properties of metals	13
	2.2.2 Mechanical properties of metals	
	2.3 Ferrous metals	13
	2.3.1 Cast iron	14
	2.3.2 Wrought iron	16
	2.3.3 Steels	16-19
	2.4 Non-ferrous metals	20-21
	2.5 Ceramics	21
	2.5.1 Composition	22
	2.5.2 Types of ceramics	22
	2.5.3 Properties of ceramics	22
	2.5.4 Applications of ceramics	23
	2.5.5 Limitations of ceramics	23
	2.6 Composites	23-25
	2.6.1 Composition	23
	2.6.2 Types of composites	24
	2.6.3 properties of composites	24
	2.6.4 Manufacturing of composites	25
	2.6.5 Applications of composites	25
	2.7 Smart materials	26
3.	Manufacturing Processes	28
	3.1 Principles of casting	28
	3.1.1 Types of castings	30
	3.2 Forming	31
	3.2.1 Types of forming processes	32-34
	3.3 Metal joining processes	35
	3.3.1 Permanent joint	36
	3.3.2 Temporary joint	37
	3.4 Machining Processes	37-39
	3.5 Introduction to CNC machines	40-42
	3.5.1 Basic components of a CNC machine	40
	3.5.2 Sequential steps in CNC machining	41
	3.5.3 Advantages of CNC machining	42
	3.6 3D Printing	42-44

	3.6.1 Key concepts and components in 3D printing	42
	3.6.2 Advantages of 3D printing	43
	3.6.3 Applications of 3D printing	44
	3.7 Smart manufacturing	44-46
	3.7.1 Key Components and Technologies of Smart Manufacturing	44
	3.7.2 Advantages of smart manufacturing	45
	3.7.3 Challenges and considerations of smart manufacturing	46
4.	Thermal Engineering	
	4.1 Steam boilers	47-53
	4.1.1 Classification of steam boilers	47
	4.1.2 Selection of a boiler	47
	4.1.3 Fire tube boiler vs water tube boiler	48
	4.1.4 Working principle of Lamont boiler	48
	4.1.5 Working principle of Babcock and Wilcox boiler	49
	4.1.6 Working principle of Benson boiler	50
	4.1.7 Working principle of Cochran boiler	51
	4.1.8 Working principle of Locomotive boiler	52
	4.1.9 Boiler mountings	52
	4.1.10 Boiler accessories	53
	4.2 Otto cycle	54-55
	4.3 Diesel cycle	55-57
	4.4 Refrigeration and Air conditioning cycles	58-65
	4.4.1 Vapour Compression Refrigeration System	58
	4.4.2 Refrigerant	59
	4.4.3 Classification of Refrigerants	60
	4.4.4 Basic Principles of Air conditioning	61
	4.4.5 Terms used in air conditioning	62
	4.4.6 Room air conditioner	63
	4.4.7 General air conditioning systems	64
	4.4.8 Winter air conditioning systems	64
	4.4.9 Summer air conditioning systems	65
	4.5 Internal combustion engines (IC engines)	65-72
	4.5.1 Classification of IC engines	66
	4.5.2 Important terms used in IC engines	66
	4.5.3 Components of an IC engines	67
	4.5.4 Working principle of 4-S Petrol engine	68
	4.5.5 Working principle of 4-S Diesel engine	69
	4.5.6 Differences between S.I Engines and C.I Engines	70
	4.5.7 Working principle of 2-S Petrol engine	70
	4.5.8 Working principle of 2-S diesel engine	71
	4.5.9 Differences between 2-S and 4-S engines	72
	4.6 Components of Electric Vehicles (EV)	72-74
	4.7 Components of Hybrid Vehicles	74-75
5.	Power Plants	
	5.1 Working principle of steam power plant	77-80
	5.1.2 Advantages and disadvantages of steam power plant	78
	5.2 Working principle of diesel power plant	78
	5.3 Working principle of hydro power plant	80

	5.4 Working principle of nuclear power plant	81-83
	5.4.1 Components of nuclear power plant	83
6.	Mechanical Power Transmission	
	6.1 Belt drives	84-86
	6.1.1 Types of belts	84
	6.1.2 Types of flat belt drives	84
	6.1.3 Applications of belt drives	85
	6.1.4 Materials used for belt drives	86
	6.2 Chain drives	87-88
	6.2.1 Types of chains	87
	6.2.2 Advantages of chain drives	87
	6.2.3 Disadvantages of chain drives	87
	6.2.4 Applications of chain drives	88
	6.3 Rope drives	88-90
	6.3.1 Types of Rope drives	89
	6.3.2 Advantages of rope drives	89
	6.3.3 Disadvantages of rope drives	90
	6.3.4 Applications of rope drives	90
	6.4 Gear drives	91-95
	6.4.1 Types of gear drives	92
	6.4.2 Advantages of gear drives	93
	6.4.3 Disadvantages of gear drives	93
	6.4.4 Applications of gear drives	94
	6.4.5 Terminology used in gear drives	95
7.	Introduction to Robotics	
	7.1 Introduction	97
	7.2 Links and Joints	98
	7.2.1 Links of a robotic arm	98
	7.2.2 Joints	98
	7.3 Configurations	99-102
	7.3.1 Polar configuration	99
	7.3.2 Cylindrical configuration	99
	7.3.3 Cartesian coordinate configuration	100
	7.3.4 Jointed arm robotic configuration	101
	7.3.5 SCARA configuration	102
	7.4 Applications Of Robotics	103
	Multiple Choice Questions	110
	References	