Remote Sensing, GIS and GPS: Principles and Applications

Remote Sensing, GIS and GPS: Principles and Applications is a comprehensive textbook that introduces the foundations, techniques, and real-world applications of geospatial technologies. Designed for students, researchers, and professionals, the book explains how remote sensing, global positioning systems (GPS), and geographic information systems (GIS) are revolutionizing Earth observation, resource management, and decision-making across disciplines.

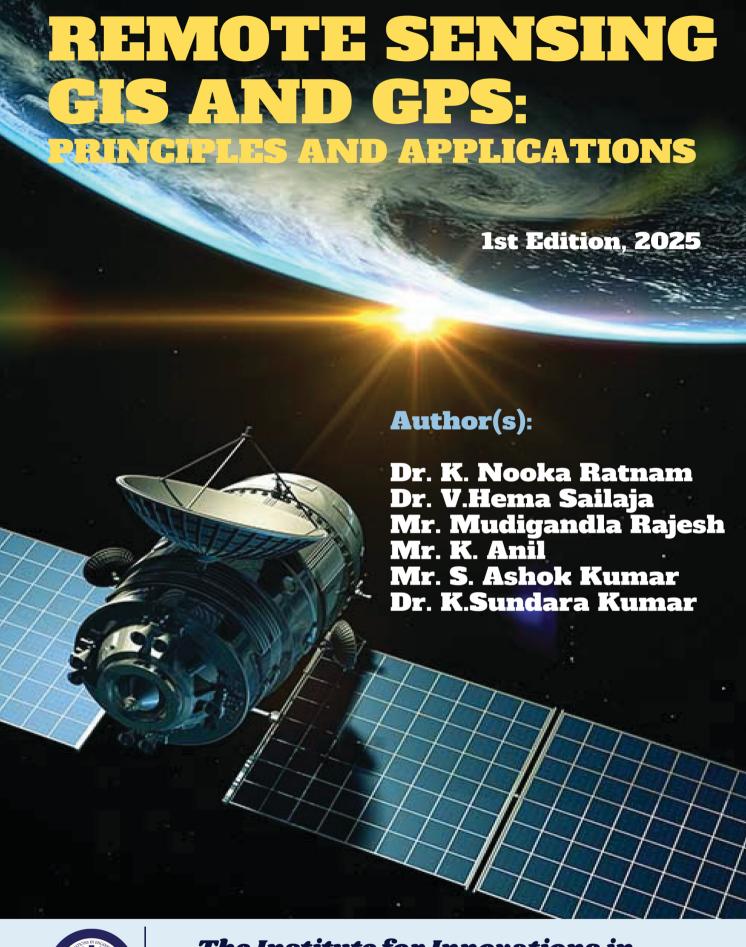
Beginning with the principles of remote sensing, the text explores the physics of electromagnetic radiation, sensor technologies, data acquisition, image processing, and classification techniques. It then introduces GPS fundamentals, including positioning, navigation, accuracy, and error correction. The coverage of GIS provides insights into spatial and non-spatial data, map projections, data models, thematic mapping, and advanced analysis methods.

The book emphasizes the integration of Remote Sensing, GPS, and GIS, demonstrating their combined potential in solving global and regional challenges from precision agriculture, forestry, and water resource management to urban planning, disaster monitoring, and environmental sustainability.

Key Features of the Book:

- 1. Clear explanation of principles, sensors, and data acquisition.
- 2. Step-by-step guide to image processing, classification, and accuracy assessment.
- 3. Practical insights into GPS applications for navigation, mapping, and fieldwork.
- 4. Detailed coverage of GIS concepts, spatial analysis, and geostatistics.
- 5. Richly illustrated with figures, diagrams, and examples.

An essential resource for students and professionals in engineering, environmental science, geography, agriculture, and urban studies, bridging theory with practice.


Scan this QR Code &visit us:

Published by:

The Institute for Innovations in Engineering and Technology (IIET) www.theiiet.com contact@theiiet.com

REMOTE SENSING, GIS AND **GPS** PRINCIPLES AND APPLICATIONS

The Institute for Innovations in Engineering and Technology (IIET)

ISBN: 978-81-981763-7-0

REMOTE SENSING GIS AND GPS: PRINCIPLES AND APPLICATIONS

Edition-1 September-2025

Author (s)

Dr. K. Nooka Ratnam

Associate Professor Department of Civil Engineering AdiKavi Nannaya University Rajamahendravaram, Andhra Pradesh

Dr. V. Hema Sailaja

IOCL Chair Professor Department of Environmental Sciences Andhra University, Visakhapatnam

Mr. Anil Kodimela

Assistant Professor Department of Civil Engineering, Bapatla Engineering College (BEC) Bapatla, Andhra Pradesh

Mr. Mudigandla Rajesh

Research Scholar

Department of Geo-Engineering and Resource Development Technology

Andhra University College of Engineering, Visakhapatnam

Andhra Pradesh, India

Mr. S. Ashok Kumar

Associate Professor and Deputy HOD
Civil Engineering Department
DVR & Dr. HS MIC College of
Technology (Autonomous) (MIC)
Kanchikacherla

Dr. Kusuma Sundara Kumar

Professor & HoD
Department of Civil Engineering
Ramachandra College of Engineering (A)
Eluru, Andhra Pradesh, India

Publisher:

The Institute for Innovations in
Engineering and Technology
1-102, GP Street, Gurazada,
Pamidimukkala Mandal, Krishna (Dt.),
AP-521256, Website: www.theiiet.com
E-Mail: contact@theiiet.com

ISBN: 978-81-981763-7-0

978-81-981763-7-0

Author(s)Details:

Dr. Nooka Ratnam Kinthada: Associate Professor at AdiKavi Nannaya University, Rajamahendravaram. With a Ph.D. in Water Resource Management and 24 years of experience, she specializes in geospatial information technology, water resources, and civil engineering. She has received prestigious awards including the CSIR-SRF and has served in key academic and administrative roles.

Dr. V. Hema Sailaja: IOCL Chair Professor, Department of Environmental Sciences, College of Science and Technology Andhra University, Visakhapatnam. She holds a Ph.D. in Environmental Science and Technology (JNTUH) and has over 15 years of experience in teaching and research. Her expertise lies in environmental monitoring, urban development, disaster risk assessment, and geospatial data analytics.

Mudigandla Rajesh: Research Scholar at Andhra University College of Engineering (A), Visakhapatnam. His work focuses on environmental and hydrological studies, including rainfall—runoff modeling, land use/land cover dynamics, landfill leachate treatment, and watershed management using geospatial tools. He has received prestigious award including NET JRF and Assistant Professorship.

Mr. Anil Kodimela: Assistant Professor in Civil Engineering at Bapatla Engineering College (BEC), Andhra Pradesh. He holds an M. Tech in Geo-Engineering from Andhra University and specializes in integrating geospatial technologies with civil engineering practices. He is active in teaching and applied research.

Mr. S. Ashok Kumar: Associate Professor and Deputy HOD of Civil Engineering at DVR & Dr. HS MIC College of Technology, Andhra Pradesh. Withover23 years of experience in teaching, research, and industry, his expertise spans water resources, wastewater treatment, solid waste management, IoT in civil engineering, and GIS applications. He has published more than 40 papers and holds two patents.

Dr. K. Sundara Kumar: Professor of Civil Engineering with over 25 years of experience in academics, research, and industry. He holds a B. Tech from JNTUK, M. Tech from IIT Madras, and Ph.D. in Environmental Remote Sensing from JNTUK. He has published 60+ research papers, holds one granted patent with six more published, and completed a DST-funded project with another from SERB under progress. A recipient of multiple "Best Teacher" awards, he is a life member of ISTE, IE(I), and EPS.

THE INSTITUTE FOR INNOVATIONS IN ENGINEERING AND TECHNOLOGY

Published by The Institute for Innovations in Engineering and Technology

1-102, GP Street, Gurazada, Pamidimukkala Mandal, Krishna (Dt.), Andhra Pradesh-521256.

Title of the Book: **Remote Sensing, GIS and GPS: Principles and Applications;** *Edition-1, September Copyright* © 2025, with Authors.

Authors:

Dr. K. Nooka Ratnam, Associate Professor, Department of Civil Engineering, AdiKavi Nannaya University, Rajamahendravaram, Andhra Pradesh.

Dr. V. Hema Sailaja, IOCL Chair Professor, Department of Environmental Sciences, Andhra University, Visakhapatnam.

Mr. Mudigandla Rajesh, Research Scholar, Department of Geo-Engineering and Resource Development Technology, Andhra University College of Engineering, Visakhapatnam, Andhra Pradesh, India.

Mr. **K. Anil**, Assistant Professor, Department of Civil Engineering, Bapatla Engineering College (BEC), Bapatla, Andhra Pradesh.

Mr. S. Ashok Kumar, Associate Professor and Deputy HOD, Civil Engineering Department, DVR & Dr. HS MIC College of Technology (Autonomous) (MIC), Kanchikacherla.

Dr. Kusuma Sundara Kumar, Professor & HoD, Department of Civil Engineering, Ramachandra College of Engineering (A), Eluru, Andhra Pradesh, India

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying, recording or otherwise or stored in a database or retrieval system without the prior written permission of the publisher or editors. The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,

The Institute for Innovations in Engineering and Technology

Information contained in this work has been obtained by The Institute for Innovations in Engineering and Technology, from sources believed to be reliable. However, neither The Institute for Innovations in Engineering and Technology nor its authors guarantee the accuracy or completeness of any information published herein, and neither The Institute for Innovations in Engineering and Technology (India) nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that The Institute for Innovations in Engineering and Technology and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

Price: MRP Rs. 650/-

Typeset at the IIET, D: 1-102, GP Street, Vijayawada-521256. Printed and bounded in India at Flash Photostat, Vijayawada-520007, Visit us at: www.theiiet.com; Phone: 91-9533111789;

Write to us at: contact@theiiet.com

PREFACE

The fields of Remote Sensing, Global Positioning System (GPS), and Geographic Information Systems (GIS) have witnessed remarkable growth in recent decades, establishing themselves as essential technologies for scientific research, environmental management, infrastructure development, and sustainable planning. Their ability to provide accurate, reliable, and timely spatial information has made them indispensable in addressing challenges such as climate change, urbanization, natural hazards, and resource management.

This textbook, *Remote Sensing, GPS and GIS: Principles and Applications*, has been prepared with the objective of presenting the fundamental principles and practical applications of geospatial technologies in a clear and systematic manner. The contents of the book are structured to cover the physics of remote sensing, sensor platforms, data acquisition methods, digital image processing, GPS fundamentals, and GIS concepts including spatial analysis, data integration, and modeling. The integration of these three domains is highlighted through case studies and applications in agriculture, forestry, hydrology, disaster management, and urban planning.

The book is intended to serve as a comprehensive resource for undergraduate and postgraduate students in engineering, environmental sciences, geography, and allied disciplines. It is also expected to benefit researchers, academicians, and practitioners seeking to apply geospatial technologies in their respective fields. To facilitate learning, the text is supported by illustrations and diagrams that bridge theoretical concepts with real-world practice.

The authors wish to express their deep sense of gratitude to all those who have contributed directly or indirectly to the successful completion of this book. We are indebted to our colleagues, mentors, and research collaborators for their valuable insights and encouragement throughout the preparation of this work.

We extend our heartfelt appreciation to our institutions for providing the academic environment and resources that supported this endeavor. Special thanks are due to Dr. Raffi Mohammed, Professor of Mechanical Engineering, Ramachandra College of Engineering, Eluru, for his constant encouragement, insightful suggestions, and continuous support in shaping the content and direction of this book.

We also acknowledge our families for their patience, understanding, and unwavering motivation, which made this work possible.

The Authors

CONTENTS

PAGES

SE	CCTION 1: PRINCIPLES OF REMOTE S	SENSING
Chapter	1: The Physics of Remote Sensing	3
1.1 Sou	arces of Energy	4
1.2 Act	tive and Passive Radiation	7
1.3 Ele	ectromagnetic Radiation	7
1.4 Ref	flectance	9
1.5 Tra	nsmission	10
1.6 Ab	sorption	10
1.7 The	ermal Emissions	11
1.8 Inte	eraction with Atmosphere	11
1.9 Atr	nospheric Windows	13
1.10	Spectral Reflectance of Earth's Surface Features	13
1.11	The Multi-Concept of Remote Sensing	15
Chapter	2: Platforms and Sensors	16
2.1 Var	rious Types of Platforms	16
2.2 IRS	S Satellite Sensors	17
2.3 LA	NDSAT	18
2.4 SPG	TC	19
2.5 IK	ONOS	20
2.6 QU	JICK BIRD	22
2.7 GE	OEYE	23
2.8 KC	OMPSAT	24
2.9 Wo	orldview II & III	25
2.10	Microwave	26
2.11	ALOS (Advanced Land Observing Satellite)	26
2.12	Planet Data	27
2.13	SENTINEL	28
2.14	SMAP (Soil Moisture Active Passive)	29
2.15	MODIS (Moderate Resolution Imaging	30
	Spectroradiometer)	
Chapter	3: Data Acquisition Systems	31
3.1 Op	1	31
	ermal and Microwave	32
3.3 Dig	gital Images in Remote sensing	32
_	mposition of a digital satellite image	33
	ucture of a Digital Image	34
	pes of Digital Images	35
• •	lour composites	36
	solutions of a Satellite Image	37
	atial Resolution	37
3.10	Spectral Resolution	38
3.11	Radiometric Resolution	40
3.12	Temporal Resolution	41

3.13	Signal-to-Noise Ratio (SNR)	41
3.14	LiDAR Data Acquisition and Processing	41
Chapter	4: Applications	43
	griculture and Forestry Applications of Remote Sensing	43
	cology and Soil Applications of Remote Sensing	44
	ater Resources and Hydrology Applications of Remote	44
	nsing	
	eanography and Coastal Studies Applications of Remote	45
	nsing	
	vironment and Ecology Applications of Remote Sensing	46
	ban and Regional Planning Applications of Remote Sensing	46
	saster Management Applications of Remote Sensing	47
	efence and Security Applications of Remote Sensing	48
	ECTION 2: SATELLITE IMAGE PROCES	SING
D	Letion 2. Satisfied ivings i Roces	
Chapter	- 5 Data Products and Image Pre-processing	50
	ata Products and Their Characteristics	51
	gital Image Formation	52
	gital Image Display Mechanism	52
	age Histograms	52
	ok-Up Table Data	53
	e-processing – Atmospheric	53
	e-processing – Radiometric	54
	e-processing – Geometric Corrections	54
	sic Principles of Visual Interpretation	55
	Ground Truth	56
5.11	Orthorectification	57
	- 6 Image Enhancements	58
_	near and Non-linear Contrast Enhancement Techniques	58
	ensity Slicing	60
	eudo Colour Images	61
	atial Enhancement Techniques (Convolution Filtering)	61
-	age Algebra	62
	incipal Component Analysis (PCA)	62
	ata Fusion Techniques	63
	- 7: Image Classification Techniques	64
	pervised Classification	64
	aining Set	65
	atistical Computation	66
	nderstanding Feature Space & Scatter Plots	66
	gnature Purity & Separability	66
•	yes' Decision Rule	67
	on-Parametric & Parametric Classification Techniques	67
	inimum Distance Rule	68
	rallelepiped Algorithm	68
7.10	Maximum Likelihood Method	68
7.11	Unsupervised and Hybrid Classification Techniques	69
7.12	Classification Analysis	70
7.13	Confusion Matrix	71

7.14	Error Analysis & Kappa Coefficient	72
7.15	Analysis of Multi-Temporal Series and Change	73
	Detection	
Chapter-	8: Advanced Classification Techniques	74
_	rning Methods	74
	ect, Texture	75
•	ect-Based Fuzzy	75
	N and SVM Classification Techniques	75
	-Pixel Mixture Analysis	78
	ect-Oriented Image Classification	78
	ge Processing	78
	mentation	79
_	hods of Segmentation	79
8.10	MDL (Minimum Description Length)	80
8.11	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	80
8.12	Mean-Shift	81
8.13	Edge Detection	81
8.14	Spectral Indices	82
8.15	Vegetation Indices	82
8.16	Water-Related Indices	83
8.17	Indices Related to Cloud Properties	83
8.18	Google Earth Engine Platform for Satellite Data	84
	Processing	
9	SECTION 3: THERMAL, MICROWAVE, A	AND
_		
	HYPERSPECTRAL REMOTE SENSING	G
Chanter_	9: Thermal Remote Sensing	86
	rmal Sensors and Characteristics	86
	rpretation of Thermal Images	87
	issivity Conservation	88
	rmal Inertia Considerations	89
	tors Affecting Analysis of Thermal Images	89
	mation of Land Surface Temperature (LST)	90
	olications of Thermal Remote Sensing for Geological	91
J. / App		71
	potranspiration (ET) and Thermal Remote Sensing	92
	10: Microwave Remote Sensing	93
	8	93
	icrowave Remote Sensing and Its Advantages stive and Passive Systems	93 94
	atforms and Sensors	94 94
		94 95
	larimetry – A Complementary Technique	93 96
	10.5 Hybrid Systems	
10.6 Basic Principles of Radar 10.7 Radar Equation		97 97
	<u>=</u>	
	esolution and Range	98
	ase and Angular Measurements Microsycy Scattering and Its Measurement	99
10.10 10.11	Microwave Scattering and Its Measurement	99 100
	Relationships Between Scene and Sensor Parameters	
10.12	Imaging Systems	100

10.13	Imagery - Their Characteristics and Interpretation	101
10.14	Applications in Various Fields	101
10.15	Land Use / Land Cover	102
10.16	Soil / Rock	103
10.17	Hydrology and Flood Disaster Applications	103
Chapte	r- 11: Hyperspectral Remote Sensing	104
11.1	Types of Hyperspectral Remote Sensing Systems	104
11.2	Methods of Hyperspectral Remote Sensing	106
11.3	Applications of Hyperspectral Remote Sensing	107
11.4	Geology and Mineral Exploration Applications of	107
	Hyperspectral Remote Sensing	
11.5	Environmental Monitoring Applications of	108
	Hyperspectral Remote Sensing	
11.6	Urban and Land Use Planning Applications of	109
	Hyperspectral Remote Sensing	
11.7	Disaster Management Applications of Hyperspectral	109
	Remote Sensing	
11.8	Defence and Security Applications of Hyperspectral	110
	Remote Sensing	
11.9	Public Health and Food Security Applications of	111
	Hyperspectral Remote Sensing	
11.10	Principles of Hyperspectral Remote Sensing	112
	Spectral Cube	113
	Airborne and Spaceborne Hyperspectral Sensors	113
	Data Correction – Atmospheric	114
	Radiometric and Geometric Correction	114
	Data Visualization	115
	Animation	116
	Multiple Colour Composites	116
	Observing Signatures of Various Features and	117
	Comparing with Spectral Libraries	
11.19	Comparison of PCA	117
	MNF (Minimum Noise Fraction)	118
	ICA Derived Products	118
11.22	Spectral Mapping Methods	119
	Spectral Angle Mapper (SAM)	119
	Spectral Correlation Mapper (SCM)	120
11.25	Spectral Feature Fitting (SFF)	120
	Linear Spectral Unmixing (LSU)	121
	r- 12: SAR Interferometry for DEM Generation	122
_	Differential SAR Interferometry for Surface Displacement Studies	123
	Applications in Land Subsidence	123
	Landslide Movements	123
12.4	Glacier Movements	124
	Polarimetry in Radar Remote Sensing	124
	Basic Equations, Propagation of Waves, and Wave Polarization	125
(I	HH, VV, HV, VH)	

SECTION 4: GEOGRAPHICAL INFORMATION SYSTEMS

Chapter- 13: Introduc	tion	126
13.1 Functions of GIS		127
13.2 Map		131
13.3 Mapping Concepts	5	132
13.4 Analysis with Pape		133
13.5 Limitations	•	134
13.6 Computer-Automa	ted Cartography	134
13.7 History and Develo	<u> </u>	135
13.8 GIS – Definition	•	135
13.9 Advantages of Dig	ital Maps	136
13.10 Projections a	and Coordinate Systems	137
Chapter- 14: Fundame	entals of GIS	138
14.1 Information System		138
14.2 Modelling Real-W		139
14.3 Data Models		140
14.4 Spatial and Non-Sp	patial Data	140
14.5 Components		141
14.6 Data Collection an	d Input	142
14.7 Data Conversion a	nd Metadata	142
Chapter- 15: Database	e Management	144
15.1 Database Structure		144
15.2 Files		145
15.3 Standard Data Form	nats	145
15.4 Compression Techn	niques	146
15.5 Hardware and Soft	ware	147
Chapter- 16: Topology	,	149
16.1 Types of Errors		150
16.2 Editing and Error Re	etification	150
16.3 Types of Topology		151
16.4 Modelling Topologic	al Relationships	152
16.5 Tolerances	•	153
Chapter- 17: Spatial A	nalysis	154
17.1 Proximity Analysis	· ·	154
17.2 Overlay Analysis		155
17.3 Buffer Analysis		156
17.4 Network Analysis		157
17.5 Route Alignment		157
17.6 Canal Alignment		158
17.7 Digital Elevation N	Models	158
17.8 Map Composition		159
	litative and Quantitative Maps	159
17.10 Levels of Ma		160
	ts and Map Scales	160
17.12 3D Analyst	-	161
Chapter 18: GIS Proje	ect Planning and Implementation	163

18.1 Understanding the Requirements	164
18.2 Phases of Planning	164
18.3 Specifications	165
18.4 Procedure for Analysis Projects	166
18.5 Design Projects	167
SECTION 5: GEOSPATIAL DATA PROCESSING	
	AND
MODELLING	
Chapter- 19: Interpolation	168
19.1 Local and Global Methods of Interpolation	169
19.2 Kriging Methods	170
19.3 Geostatistical Methods	171
Chapter- 20 Digital Elevation Models	173
20.1 Slope and Aspect	174
20.2 Site Selection Studies	175
20.3 Viewshed and Watershed Analysis	175
20.4 Working with Open Source DEMs	177
Chapter-21: GIS Models	179
21.1 Modelling Process	179
21.2 Classification	180
21.3 Model Builder Tools	181
Chapter-22: Programming Tools	184
22.1 Python	184
22.2 R Programming and MATLAB Concepts for Geo-processing	184
Tools	107
22.3 Free and Open-Source GIS Components	185
22.4 Data Sources	187
22.5 Free and Open-Source GIS Software and Applications	188
SECTION 6: GLOBAL POSITIONING SYSTEM (
· · · · · · · · · · · · · · · · · · ·	
Chapter-23: Types of GPS	189
23.1 Aided GPS (A-GPS)	190
23.2 Assisted Navigation GPS (Standalone GPS)	191
23.3 Differential GPS (DGPS)	192
23.4 Real-Time Kinematic GPS (RTK-GPS)	192
23.5 Simultaneous Multi-GNSS GPS	193
23.6 Military GPS (P(Y) Code GPS)	194
Chapter-24: Segments of GPS	195
24.1 Space Segment	195
24.2 Control Segment	197
24.3 User Segment	197
Chapter-25: Working Principles of GPS	199
25.1 Trilateration in GPS	199
25.2 Working Principle of DGPS	200
25.3 Difference between GPS and DGPS	200
Chapter-26: Applications of GPS (Global Positioning	203
System)	
26.1 Navigation and Routing	204
26.2 Surveying and Mapping	204
26.3 Agriculture (Precision Farming)	205
5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

26.4 Disaster Management		205
26.5 Mi	litary and Défense	205
26.6 Av	iation and Marine Applications	206
26.7 Tra	ansportation and Logistics	206
26.8 Per	rsonal and Recreational Uses	207
26.9 Tel	ecommunication and Networking	207
26.10	Scientific Research	207
26.11	Urban Planning and Infrastructure	208
26.12	Law Enforcement and Public Safety	208
26.13	GPS Devices	208